Section 3

Course Delivery Details

3.1 Weekly Course Structure and Workload

Session	Time	Duration - Minutes	Content	
Presentation	4pm	50	Online Live Lecture	
Presentation	5pm	50	Online Live Lecture	
Coffee	6pm	15	Rest and informal live Q&A	
Workshop	6.15pm	45	Elective Workshop - Working together to de-	
			sign or code or understand an assignment – In- structor led. This is an elective for students that may need extra coaching/tuition to ascend the learning curve initially.	
Study and	Participant	1 hours	Second reading of course material and/or view-	
Reading Time	Chosen		ing of recorded lecture. Involvement in technical discussion forum.	
Design	Participant	8 hours	Homework Assignments - hands on Experience of	
Work	Chosen		designing and coding and synthesis.	
Assessment Feedback	5 minutes per student	_	1x1 Individual student feedback per week.	
Total Student Workload	_	11 hours	For average student - some will be less and some more.	
Total		8 hours	3 Hours – Online Lectures	
Lecturer			2 Hours – Online Discussion	
Workload			1.75 – Hours Marking/Grading Homework/As-	
			signments, 7 minutes per student	
			1.25 Hours – 1x1 Feedback each week on average	

Table 3.1 :	Indicative	Weekly	Course	Plan
---------------	------------	--------	--------	------

An indicative weekly course delivery structure is given in table 3.1. The durations given are approximate and will vary depending on class size and class competence and the number of questions arising.

3.2 Course Content Outline

Section Name	Content
Context and Background Material	State of the art in Digital Design Technology, CPU, SOC, ASIC, FPGA, Memory. Overview of Digital Systems Design, Flow and Tools.
	Review of Digital Logic Basic Elements - Logic Gates, Multiplexor, Flip-Flop, decoders. Use of Timing Diagrams to test behaviour of logic citcuits.
Verilog1 – Essen- tials	Introduction to Basic Verilog Modelling of combinational logic and synchronous logic. Different coding methods.
Verilog2 – FSM Coding	Verilog Coding of FSMs - different styles of coding.
Verilog3 – Test- benches	Coding of a basic functional testbench. Correct Application of stimulus to UUT. Self-Checking testbench. Building up testbench complexity.
Verification1	Test Specifications. Unit testing and system testing. Use of Lint- ing. Testing Silicon - Functional testing, BIST, SCAN and pro- duction testing. Description of Verification Methodologies - UVM. Verilog and UPF in verification.
Digital Design1 – FSMs	Introduction to Finite State Machines (FSMs). Logic derivation from FSMs. Application of FSMs to design solutions to various problems e.g. simple UART receive and transmit, Sequence De- tect, Memory Controller, Memory Arbitration.
Digital Design2 – Top Down1	Introduction to Top Down Design Methodology and application to Design of 16x8 FIFO from Flips-Flops or similar.
Digital Design3 - Bus Protocols	ARM and AMBA, APB, AHBLite and AXI4 buses, how they work and compare. Design of AMBA bus DMA controller using one of the AMBA protocols.
Digital Design4 - Timing Analysis1	Timing Analysis(STA) of digital blocks. Minimum and maximum time calculations. Chip I/O timing and PLL application.
Digital Design5 - Asynchronous1	Single bit Asynchronous Inputs to FSMs and synchronization methods. Metastability and Reliability of single bit and double synchronisation methods. Design Method to safely facilitate bus crossing asynchronous interface – method 1.
Digital Design6 - Asynchronous2	Efficient Data Bus Crossing of asynchronous interfaces using FIFO.
Digital Design7 - Top Down2	Design of a simple Microprocessor or similar project.
Digital Design8 - Realisation1	FPGAs - Overview of the architecture and building blocks of XIL- INX, Altera(Intel) and Microsemi FPGAs. Comparison of FPGA to ASIC development. IO Standards, DDR Memory and DDR interfacing.

 Table 3.2:
 Outline of Course Lecture Content

3.2.1 Indicative Assessment Content

This module will be assessed using 100% Continuous Assessment(CA). Some of the indicative homework and type of assignments/assessments are shown in table 3.3.

Section Name	Content		
Assignment1	Instructor Led – Verilog Coding of a logic schematic with		
	switches and LEDs. Writing verilog self-checking testbench to		
	test schematic. Synthesis(with basic constraints), Place and		
	route(PAR) and download to FPGA (using Vivado).		
Assignment2	Participant Led – Design an FSM to solve simple problem e.g.		
	Transmit UART. Coding and self-checking testbench to test this		
	design.		
Assignment3	Design, Document, Code and test of 16x8 FIFO.		
Assignment4	Design, Document, Code and Test of AXI4 DMA Controller.		
Assignment5	Design, Document, Code and Test of memory controller to sim-		
	ple asynchronous SRAM. Code and test this design including bus		
	functional model (BFM) of the SRAM.		
Assignment6	Design, Document, Code and Test of multi-master memory con-		
	troller to simple asynchronous SRAM. Arbitration using priority		
	and round robin basic arbiters		
Assignment7	Design, Document, Code and Test of asynchronous interface clock		
	crossing with a simple bus crossing method		
Assignment8	Capstone Project - Design, Code and test of a simple Micropro-		
	cessor or similiar		

 Table 3.3:
 Indicative - Course Assessment Content