

Sunburst Design - Advanced Universal Verification Methodology

by Recognized Verilog & SystemVerilog Guru, Cliff Cummings of Sunburst Design, Inc.
3 Days
70% Lecture, 30% Lab

Prerequisites (mandatory) - This is an advanced UVM verification course that assumes engineers
have already taken UVM training or have 2 years of UVM experience.

Course Syllabus
(~10 minute breaks near the top of each hour)

(Lab time is scheduled for "Lunch & Lab" and again near the end of the day)
This course may be customized by client companies on a WebEx conference call with Cliff Cummings.

Day One
UVM Resources & Introduction

• UVM resources
• Industry trends - UVM verification
• Industry trends - debug time related to project schedule

Review of Advanced Techniques Used in UVM Base Classes

• Up-casting and down-casting (used extensively in UVM verification environments)
• Local & protected (hiding) in UVM Base Class Library (BCL)
• Static class methods in UVM BCL
• Extern methods in UVM BCL
• Singleton pattern and usage in UVM BCL

Advanced uvm_resource_db Techniques
Includes materials from Cliff's To-Be-Published paper on the uvm_resource_db and virtual sequences.

• Comparing the OVM set_config_* commands, uvm_config_db API and uvm_resource_db API
• Deep dive into how the set_config_* commands work and their disadvantages
• Why engineers should not use assert on uvm_config_db#()::get commands
• Why the OVM set_config_* commands were deprecated from UVM
• Deep dive into the UVM resources database
• Why 95%+ of engineers use uvm_config_db and why they should use uvm_resource_db
• The uvm_config_db API and why it has limitations
• The uvm_resource_db and how it removes the uvm_config_db limitations
• Favorable experiences using uvm_resource_db on a recent, huge verification project
• LAB: uvm_config_db and uvm_resource_db usage (Full UVM self-checking testbench)

Review of Best UVM Reporting Macro Techniques
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM messaging.

• UVM messaging messages & macros - emphasis on macros
• UVM verbosities - why you should avoid using UVM_LOW verbosity
• UVM verbosity usage guidelines

File Guards, Packages & Command File Strategies for Large Projects

• Importing from packages - multiple techniques
• SystemVerilog-2009 - importing packages in module headers
• SystemVerilog-2009 - importing and exporting nested packages
• File guards & recommended naming convention
• File guards for macro files - compile in command files first
• Incdir command options - compile in command files second
• Nested command files - compile in command files third
• File guards in interface files
• File guards in package files
• Each class a separate file
• Extern methods in class files
• Include class files into package files
• Keep packages out of the global space
• Compiling packages

Review of UVM Transaction Definition Types & Sequence Definition Types
Includes materials from Cliff's SNUG 2014 award-winning paper on UVM transactions.

• Why classes -vs- structs?
• do_copy, do_compare and other do_methods
• Field macro limitations
• UVM sequence body task
• pre_start() -vs- pre_body()
• start_item(tx) - finish_item(tx)
• `uvm_do macros
• Benchmarks

UVM Testbench Environment with Config Objects

• Config objects store configuration information in components
• Config objects extend from uvm_object
• Most common usage: tests, environments, agents
• Active and passive agents
• Enabling functional coverage component
• Passing configuration information from test to environment to agent
• Multi-part config object example
• LAB – FIFO Gray Code Pointer - (Full UVM self-checking testbench)

Day Two
Review of UVM Scoreboard Style #1
Includes materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

• SystemVerilog queues
• SystemVerilog mailboxes
• uvm_tlm_fifo
• uvm_tlm_analysis_fifo
• Scoreboard architecture style #1
• Pre-coded scoreboard wrapper and predictor
• Extern calc_exp function - requires user to complete this function
• Pre-coded comparator with 2 uvm_tlm_analysis_fifos
• LAB – UVM Scoreboard Style #1 - Barrel Shifter - (Full UVM testbench lab)
• LAB – UVM Scoreboard Style #1 - Pipeline Design - (Full UVM testbench lab)

Review of Multiple Analysis Implementation Port Techniques
Includes more materials from Cliff's SNUG 2013 paper on UVM scoreboard architectures.

• Scoreboard architecture style #2
• Multiple analysis implementation ports
• `uvm_analysis_imp_decl macros
• LAB – UVM Scoreboard Style #2 - 2 Analysis Imp Ports - (Full UVM testbench lab)

SystemVerilog Bind Command

• Bindfile input ports
• Bindfile connected using .* port connections
• Bind command placed in the testbench
• How the bind command works
• Bindfile connected using combination of .* and named ports
• Bindfile signal declarations?
• Bind command placed in a second top-level dummy module

Advanced Virtual Interfaces Techniques I
Includes materials from Cliff's SNUG 2021 award-winning paper on VIF-Harness Techniques.

• Common virtual interface styles
• Style #1 - DUT interface hierarchical connections
• Style #2 - DUT interface port connections

Advanced Virtual Interfaces Techniques II
Includes materials from Cliff's SNUG 2021 award-winning paper on VIF-Harness Techniques.

• Harness / Bind virtual interface styles
• Style #3 - Larson-Harness bind technique
• Style #4 - Bind-Harness-dut_if connections
• Style #5 - Bind-dut_if connections - New technique shown at SNUG 2021
• LAB: Bind-dut_if connections testbench (Full UVM self-checking testbench)

Reactive Stimulus Techniques Using the Agent-Sequencer
Includes materials from Cliff's DVCon 2020 award-winning paper on Reactive Stimulus.

• Explanation of the reactive driver
• Explanation of the reactive sequencer
• Explanation of the reactive sequence
• Sampling output fields into the response transaction
• Common response coding mistake
• VIP considerations
• LAB: Sequencer-driver reactive stimulus testbench (Full UVM self-checking testbench)

Advanced Virtual Sequence Techniques
Includes materials from Cliff's To-Be-Published paper on the uvm_resource_db and virtual sequences.

• Three virtual sequencer techniques are shown - advantages / disadvantages described
• Virtual sequence that retrieves subsequencer handles stored in a virtual sequencer
• Test_base with init_vseq() method to store subsequencer handles in the vseq_base
• Using the uvm_resource_db to retrieve subsequencer handles directly
• LABS: Equivalent virtual sequence labs using (1) Virtual sequencer, (2) init_vseq() method, (3)

Using the uvm_resource_db (Three Full UVM self-checking testbenches)

Day Three
UVM Parameterized DUT Interface - Fundamental Technique

• Passing top-module & DUT parameters to the UVM testbench
• `uvm_component_param_utils
• `uvm_object_para_utils
• Testbench components modified for parameterized testing
• Testbench transaction/sequences modified for parameterized testing
• +UVM_TESTNAME & factory modifications / setup
• Why this technique is tedious
• LAB: UVM parameterized DUT interface (Full UVM self-checking testbench)

UVM Parameterized DUT Interface - Advanced dut_max_if Technique

• DUT Max Interface Technique - simplifies testing of parameterized designs
• dut_max_if / dut_if - connecting different bus sizes
• Bind dut_if inside of DUT
• max_defines.sv file
• DUT information struct: dut_info_s
• Port coercion
• Trick to set proper printing widths
• LAB: UVM parameterized DUT-Max interface (Full UVM self-checking testbench)

Advanced Reactive Stimulus Techniques Using the Monitor and uvm_tlm_analysis_fifo
Includes materials from Cliff's DVCon 2021 award-winning paper on Advanced Reactive Stimulus.

• Sampling the stimulus response from the same agent
• Sampling the stimulus response from a 2nd agent
• Two additional reactive stimulus techniques
• uvm_tlm_analysis_fifo in the environment
• Base_sequence using blocking-get to retrieve output sequence from uvm_tlm_analysis_fifo
• Base_sequence triggers a response event
• Using pre_start() -vs- pre_body() method
• Second technique using config objects and a virtual sequencer
• LAB: Multi-agent reactive stimulus testbench (Full UVM self-checking testbench)

Additional Advanced Techniques

• SystemVerilog-2012 interface classes
• DUT error injection without recompiling the DUT
• DUT error injection using bindfile-force technique
• Multi-agent packet example
• LAB: DUT error injection using bindfile (Full UVM self-checking testbench)
• LAB: Multi-agent packet example (Full UVM self-checking testbench)

Review of Clocking Blocks & Verification Timing
Includes materials from Cliff's SNUG 2016 paper on UVM verification timing techniques.

• Testbench stimulus/verification vector timing strategies
• #1step sampling
• Clocking blocks
• Clocking skews
• UVM usage of clocking blocks in an interface
• UVM driver timing using clocking blocks
• UVM signal sampling using clocking blocks
• 3 important timing techniques (#1 - applying stimulus, #2 & #3 sampling for verification)
• LABS - All of the full UVM self-checking labs use these clocking block techniques

Review of UVM Factory Overrides
Includes materials from Cliff's SNUG 2012 paper on the UVM factory and overrides.

• Introduction to factory overrides
• Review of factory override by_type
• Review of factory override by_inst

