
Linux debugging, profiling, tracing and performance analysis
training

On-line seminar, 4 sessions of 4 hours
Latest update: June 29, 2022

Title Linux debugging, profiling, tracing and performance analysis training

Training objectives • Be able to understand the main concepts of Linux that are relevant for per-
formance analysis: process, threads, memory management, virtual memory,
execution contexts, etc.

• Be able to analyze why a system is loaded and what are the elements that con-
tributes to this load using common Linux observability tools.

• Be able to debug an userspace application using gdb, either live or after a crash,
and analyze the contents of ELF binaries.

• Be able to trace and profile a complete userspace application and its interac-
tions with the Linux kernel in order to fix bugs using strace, ltrace, perf or
Callgrind.

• Be able to understand classical memory issues and analyze them using val-
grind, libefence or Massif.

• Be able to trace and profile the entire Linux system, using perf, ftrace, kprobes,
eBPF tools, kernelshark or LTTng

• Be able to debug Linux kernel issues: debug kernel crashes live or post-
mortem, analyze memory issues at the kernel level, analyze locking issues,
use kernel-level debuggers.

Duration Four half days - 16 hours (4 hours per half day).

Pedagogics • Lectures delivered by the trainer, over video-conference. Participants can ask
questions at any time.

• Practical demonstrations done by the trainer, based on practical labs, over
video-conference. Participants can ask questions at any time. Optionally, par-
ticipants who have access to the hardware accessories can reproduce the prac-
tical labs by themselves.

• Instant messaging for questions between sessions (replies under 24h, outside
of week-ends and bank holidays).

• Electronic copies of presentations, lab instructions and data files. This training
course is being developed by Bootlin. The training materials will be made
freely available when the first session takes place.

Trainer Clément Léger
https://bootlin.com/company/staff/clement-leger/

https://bootlin.com/company/staff/clement-leger/


Language Oral lectures: English
Materials: English.

Audience Companies and engineers interested in debugging, profiling and tracing Linux sys-
tems and applications, to analyze and address performance or latency problems.

Prerequisites
• Knowledge and practice of UNIX or GNU/Linux commands: participants
must be familiar with the Linux command line. Participants lacking experience
on this topic should get trained by themselves, for example with our freely
available on-line slides at bootlin.com/blog/command-line/.

• Minimal experience in embedded Linux development: participants should
have a minimal understanding of the architecture of embedded Linux sys-
tems: role of the Linux kernel vs. user-space, development of Linux user-
space applications in C. Following Bootlin’s Embedded Linux course at
bootlin.com/training/embedded-linux/ allows to fulfill this pre-requisite.

• Minimal English language level: B1, according to the Common European
Framework of References for Languages, for our sessions in English. See
bootlin.com/pub/training/cefr-grid.pdf for self-evaluation.

Required equipment
• Computer with the operating system of your choice, with the Google Chrome
or Chromium browser for videoconferencing

• Webcam and microphone (preferably from an audio headset)
• High speed access to the Internet

Certificate Only the participants who have attended all training sessions, and who have scored
over 50% of correct answers at the final evaluation will receive a training certificate
from Bootlin.

Disabilities Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf


Real hardware in practical demos

The hardware platform used for the practical de-
mos of this training session is the STMicroelectron-
ics STM32MP157D-DK1 Discovery board board,
which features:

• STM32MP157D (dual Cortex-A7) CPU from
STMicroelectronics

• USB powered
• 512 MB DDR3L RAM
• Gigabit Ethernet port
• 4 USB 2.0 host ports
• 1 USB-C OTG port
• 1 Micro SD slot
• On-board ST-LINK/V2-1 debugger
• Arduino Uno v3-compatible headers
• Audio codec
• Misc: buttons, LEDs

Half day 1

Lecture - Linux application stack

• Global picture: understanding the general architecture of a Linux system, overview of the major compo-
nents.

• What is the difference between a process and a thread, how applications run concurrently.
• ELF files and associated analysis tools.
• Userspace application memory layout (heap, stack, shared libraries mappings, etc).
• MMU and memory management: physical/virtual address spaces.
• Kernel context switching and scheduling
• Kernel execution contexts: kernel threads, workqueues, interrupt, threaded interrupts, softirq



Lecture - Common analysis & observability tools

• Analyzing an ELF file with GNU binary utilities (objdump, addr2line).
• Tools to monitor a Linux system: processes, memory usage and mapping, resources.
• Using vmstat, iostat, ps, top, iotop, free and understanding the metrics they provide.
• Pseudo filesystems: procfs, sysfs and debugfs.

Demo - Check what is running on a system and its load

• Observe running processes using ps and top.
• Check memory allocation and mapping with procfs and pmap.
• Monitor other resources usage using iostat, vmstat and netstat.

Lecture - Debugging an application

• Using gdb on a live process.
• Understanding compiler optimizations impact on debuggability.
• Postmortem diagnostic using core files.
• Remote debugging with gdbserver.
• Extending gdb capabilities using python scripting

Half day 2

Demo - Solving an application crash

• Analysis of compiled C code with compiler-explorer to understand optimizations.
• Managing gdb from the command line, then from an IDE.
• Using gdb Python scripting capabilities.
• Debugging a crashed application using a coredump with gdb.



Lecture - Tracing an application Demo – Debugging application issues

• Tracing system calls with strace.
• Tracing library calls with ltrace.

• Analyze dynamic library calls from an applica-
tion using ltrace.

• Debug a misbehaving application using strace.

Lecture - Memory issues Demo – Debugging memory issues

• Usual memory issues: buffer overflow, segmen-
tation fault, memory leaks, heap-stack collision.

• Memory corruption tooling, valgrind, libefence,
etc.

• Heap profiling using Massif

• Buffer overflow investigation with libefence.
• Memory leak and misbehavior detection with
valgrind and vgdb.

• Performance issues due to memory over alloca-
tion.

• Visualizing application heap usingMassif.

Half day 3

Lecture – Application profiling Demo - Application profiling

• Performances issues.
• Gathering profiling data with perf.
• Analyzing an application callgraph using Call-
grind and KCachegrind.

• Filtering the data set.
• Interpreting the data recorded by perf.

• Profiling an application with Call-
grind/KCachegrind.

• Analyzing application performances with perf.
• Generating a flamegraph using FlameGraph.

Lecture - System wide profiling and tracing

• System wide profiling using perf.
• Using kprobes to hook on kernel code without recompiling.
• eBPF tools (bcctools, bpftrace, etc) for complex tracing scenarios.
• Application and kernel tracing and visualization using ftrace, kernelshark or LTTng



Half day 4

Demo - System wide profiling and tracing

• System profiling with perf.
• IRQ latencies using ftrace.
• Tracing specific kernel actions with bpftrace.
• Tracing and visualizing system activity using kernelshark or LTTng

Lecture - Kernel debugging Demo - Kernel debugging

• Kernel compilation results (vmlinux,
System.map).

• Understanding and configuring kernel oops be-
havior.

• Post mortem analysis using kernel crash dump
with crash.

• Memory issues (KASAN, UBSAN, Kmemleak).
• Debugging the kernel using KGDB and KDB.
• Kernel locking debug configuration options
(lockdep).

• Other kernel configuration options that are use-
ful for debug.

• Analyzing an oops after using a faulty module
with obdjump and addr2line.

• Debugging a deadlock problem using PROVE_-
LOCKING options.

• Detecting undefined behavior with UBSAN in
kernel code.

• Find a module memory leak using kmemleak.
• Debugging a module with KGDB.


